Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments.
نویسندگان
چکیده
Rapid startup of microbial fuel cells (MFCs) and other bioreactors is desirable when treating wastewaters. The startup time with unamended wastewater (118 h) was similar to that obtained by adding acetate or fumarate (110-115 h), and less than that with glucose (181 h) or Fe(III) (353 h). Initial current production took longer when phosphate buffer was added, with startup times increasing with concentration from 149 h (25 mM) to 251 h (50 mM) and 526 h (100 mM). Microbial communities that developed in the reactors contained Betaproteobacteria, Acetoanaerobium noterae, and Chlorobium sp. Anode biomass densities ranged from 200 to 600 μg/cm(2) for all amendments except Fe(Ш) (1650 μg/cm(2)). Wastewater produced 91 mW/m(2), with the other MFCs producing 50 mW/m(2) (fumarate) to 103mW/m(2) (Fe(III)) when amendments were removed. These experiments show that wastewater alone is sufficient to acclimate the reactor without the need for additional chemical amendments.
منابع مشابه
Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment
Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...
متن کاملPollution reduction and electricity production from dairy industry wastewater with microbial fuel cell
Taguchi L9 orthogonal array was implemented to select optimum values of process parameters and to attain the maximum removal of pollutants and power generation from dairy industry wastewater using double chambered salt bridge microbial fuel cell. The maximum chemical oxygen demand reduction, current, voltage, power, current density and power density in double chambered salt bridge microbial fue...
متن کاملPerformance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....
متن کاملPerformance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....
متن کاملRemoval of High Concentrations of Phenol in Dual Chamber Microbial Fuel Cell
Background and purpose: Microbial fuel cell is one of the sustainable development technologies that can be used simultaneously for removal of many pollutants and generate electricity. The aim of this study was to determine the removal rate of high concentrations of phenol in a microbial fuel cell. Materials and methods: A dual chamber microbial fuel cell having Nafion proton exchange membrane ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 102 15 شماره
صفحات -
تاریخ انتشار 2011